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The first successful experiment on graphoepitaxy was growth from solution [i]. Subse- 
quent works concentrated mainly on obtaining semiconductor films, primary silicon films. 
Graphoepitaxy from solutions has now been set aside, though it has a number of undoubted ad- 
vantages: 

- it is a convenient model object: by studying growth from low-temperature solutions 
it is possible to study processes in high-temperature solutions in a melt, the direct ob- 
servation of which is difficult; 

- it is of applied value, since many important materials can be grown by this method 
under controlled conditions; and 

- it can be used as an intermediate stage for multistepped graphoepitaxy. 

It is shown in [2] that in graphoepitaxy from solutions onto a pattern in the form of 
a two-dimensional lattice, evolution of the shape of the evaporating drops, which affects 
the azimuthal orientation of the growing crystals, occurs. It is clear that in order to de- 
velop a controlled graphoepitaxy process it is necessary to understand in detail all charac- 
teristic features of this phenomenon and its relationship to technological factors. For this 
reason in this work we modeled the evolution of the shape of a liquid drop by means of a com- 
putational experiment. 

i. Mathematical Model. We shall study a square cell, containing the evaporating drop 
of solution. The cell is formed on a flat substrate by protuberances, whose profile in the 
transverse cross section has the form of a Gaussian curve (Fig. i). The protuberances are 
arranged so that gaps, which facilitate the tangential growth of a single-crystalline layer, 
appear between their faces. We place the origin of a Cartesian coordinate system at the cen- 
ter of the cell in such a manner that the z axis is perpendicular to the surface of the plate. 
Since the cell is square, by exploiting its symmetry we shall study the problem of finding 
the equilibrium shape of a drop in the region ~i conss one-eighth of the cell. The 
region 2 i is an isosceles right triangle OAB (Fig. i). 

Let 2 be the projection of the region occupied by the drop in ~i on the xy plane, while 
7 is the projection of the line of contact of the three phases. The surface of the protuber- 
ance and of the cell in 2 i is defined by the equation 

(y -- 0,5) ~ ] IAexp B2 0 ~  x ~  0.35, 0 ~ y ~  j, 
i< o.5.y ~> x, 

z=(P(x'Y)'cD(x'Y)= IAexp[ (Y--~ 0 . 3 5 < x ~ - -  B2 , 

(~o.5, o < y < o , 5 ,  y ~ x .  

( i . i )  

The parameters A and B enable selecting the form of the surface which is closest to that 
used in experiments. We shall assume that there is no convective motion of the liquid, evap- 
oration occurs slowly, and the drop passes sequentially through a series of equilibrium 
shapes corresponding to different volumes of the liquid. 

According to [3], for the liquid to be in equilibrium it is necessary and sufficient 
that on the line of three-phase contact the Dupres-Young condition be satisfied, while on 
the free surface Laplace's equation of capillarity is satisfied: 

Riga. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
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Fig. 1 

P o - - P  = o z , ( k t + k 2 ) ,  ( 1 . 2 )  

where p is the pressure in the drop, P0 is the vapor pressure, O~v is the coefficient of sur- 
face tension at the liquid-vapor boundary; and k I and k 2 are the curvatures of the principal 

normal sections. 

The length of the side of the square cell L = 22 ~m is taken as the characteristic size 
in the problem. For drops of aqueous solutions of salts, having a size L, Bond's number is 
Bo = i0-4-i0 -s Therefore, gravity can be neglected and it may be assumed that the form of 
the drop and the position of the line of three-phase contact are determined solely by capil- 
lary forces. Therefore, the pressure p in the volume of the drop is constant, and then Eq. 
(1.2) reduces to 

k I +k 2 = --C, (1.3) 

where the constant C = (p - p0)/O~v depends on the volume of the drop. 

Following [3], we introduce the vector function x = x($, ~), 0 5 $ 5 !, 0 s q 5 i, which 
transforms the region ~ into ~*, which is a unit square in the coordinates $, ~. We shall 
give the components x = x(g, ~) and y = y(g, N) in the form 

x=f(~g) Nsin~, y=](~)1]cos~,0~g~l, 0~]~l. (1.4) 

Here we use the equation of the line y in polar coordinates r = f(T), 0 ~ T s ~/4 (the angle 
increases in the clockwise direction away from the y axis). The transformation (1.4) maps 

the line $ into the side of the square 0 ~ g S i, ~ = i. We shall write Eq. (1.3) in the 
coordinates $, N in the form 

where 

n .  Arx = - -C ,  ( 1 . 5 )  

I /'Ox 0x) Ox 0x 
n is the vec.tor normal to the surface of the drop; n= ~ - ~ •  aaf~---Ouo~ au~ is the met- 

ric tensor; x ~ (x,y,z); ~, ~---- 1,2; u I ~; u 2 = ~; a=alta22 a12. 
We shall set the boundary conditions for (1.4) on the line 0 _4 ~ <__ i, n = 1 as follows: 

The Dupres-Young condition 

x~ • xn . N =  cos ~z, ( 1 . 6 )  
x02 

where N is the vector normal to the surface of the substrate at the points x = x(g, i), y = 
y(g, i), a is the angle of contact between the three phases, which we assume is constant and 
equal to 45~ 
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the contact condition 

z(i, 1) = m(x(i,  1), y(i ,  t)), 0 ~< ~ ~< I. ( 1 . 7 )  

On t h e  r e m a i n i n g  b o u n d a r i e s  o f  ~* we impose t h e  bounda ry  c o n d i t i o n s  c o r r e s p o n d i n g  t o  
t h e  symmetry o f  t h e  p r o b l e m :  

azm~=o, ~=o,  o ~ 1 ,  azla~=o, ~ = t ,  o ~ 1 , ~  
azlaq = o ,  o ~ ~ ~ ~, ~ = o. 

(1.8) 

Since it is necessary to find the equilibrium shape of the drop in the cell, the follow- 
ing condition must be added: 

z ~ ~(x(~, ~), Y(L ~)), 0 < ~ < t, 0 ~ ,1 < t. ( 1 . 9 )  

Thus the equilibrium shape of the drop and its line of contact with the substrate will 
be determined by Eq. (1.5), the system of boundary conditions (1.6)-(1.8), and the condition 
(1.9). The question of the stability of this equilibrium form is not studied in this work. 

2. Numerical Solution Procedure. The formulation of the problem given above does not 

contain explicitly as a parameter the volume of the drop v = (z- ~(x, y))dxdy. Therefore, 

in this work the sequence of equilibrium shapes corresponding to different drop volumes is 
obtained from the solution of the boundary-value problem (1.5) for a set of nearly equal values 
of the constant C. From the solution obtained we calculate the volume of the drop correspond- 
ing to the fixed value of C. It should be noted that this correspondence may not be unique 
(see, for example, [3]). The problem for fixed C was solved in the following stages: 

i) For the initial approximation the set of points (ri, ~i), i ~ i ~ n~, arranged uni- 

formly over the angle ~ =~, 0 ~ $ ~ 1 was given; these points were obtained either from 

the solution already found with the closest value of C or lay on an arc of a circle with fixed 
radius; the number of points coincided with the number of nodes in the difference grid n~ in 
the variable ~; 

2) A difference grid corresponding to a uniform grid in ~* with the steps h~ = i/ 
(n~-l) and h~ = i/(n~-l) was constructed in the region ~ at the points (ri, ~i), where 1 <i < 

n~; the coordinates of its nodes in the Cartesian system are given by 

3) Us ing  t h e  v a l u e s  o f  t h e  f u n c t i o n  z ,  found  a t  t h e  p r e c e d i n g  i t e r a t i o n ,  we d e t e r m i n e  
nx&rX and nyArY; 

4) The d i f f e r e n c e  e q u a t i o n  a p p r o x i m a t i n g  ( 1 . 5 )  w i t h  t h e  b o u n d a r y  c o n d i t i o n  ( 1 . 7 )  was 
s o l v e d i  t h e  s t a g e s  3 and 4 were r e p e a t e d  u n t i l  t h e  f i x e d  c o n v e r g e n c e  c r i t e r i o n  w i t h  r e s p e c t  
t o  t h e  f u n c t i o n  z was s a t i s f i e d ;  

5) Us ing  t h e  f u n c t i o n  z o b t a i n e d  we c a l c u l a t e d  t h e  v a l u e s  o f  t h e  mismatch  of  t h e  c o n d i -  
t i o n  ( 1 . 6 )  a t  a l i  p o i n t s  ( r i , ~ i ) ,  1 5 i 5 n~; 

6) The l i n e  ~ was d i s p l a c e d  [ i . e . ,  t h e  new c o o r d i n a t e s  ( r i ,  ~ i ) ,  1 ~ i ~ n~) were d e t e r -  
mined]  in  such  a way t h a t  t h e  maximum modulus  o f  t h e  mismatch  of  ( 1 . 6 )  d e c r e a s e d ;  i f  t h i s  
v a l u e  became l e s s  t h a n  l0  - a ,  t h e n  t h e  c a l c u l a t i o n s  were  t e r m i n a t e d ,  and o t h e r w i s e  t h e  c a l -  
c u l a t i o n s  c o n t i n u e d  w i t h  t h e  new p o s i t i o n  o f  t h e  l i n e  ~ a t  t h e  s t a g e s  2,  . . . ,  6, e t c .  

I n  a* ,  gq .  ( 1 . 5 )  was a p p r o x i m a t e d  by a c o n s e r v a t i v e  d i f f e r e n c e  scheme w i t h  s e c o n d - o r d e r  
a p p r o x i m a t i o n  on a s q u a r e  (20 • 20 n o d e s )  g r i d .  

3. R e s u l t s  and D i s c u s s i o n .  To compare t h e  r e s u l t s  o f  t h e  m o d e l i n g  w i t h  e x p e r i m e n t ,  
we p r e p a r e d  on t h e  s u r f a c e  o f  an amorphous s u b s t r a t e d  ( f u s e d  q u a r t z )  w i t h  t h e  h e l p  o f  p h o t o -  
lithography and liquid etching a microrelief in the form of a line grating with a period of 
22 pm. Since the rate of etching of the amorphous substrate is isotropic, there will be a 
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smooth transition from the surface of the substrate to the protuberances, forming the cell. 
If, furthermore, the etching is carried out in a special manner, for example until the photo- 
resist is completely removed, then the tops of the protuberances will also be rounded. The 
profile of the protuberance in the transverse section can then be approximated by a Gaussian 
curve with the constants A and B, determining the height and width of the protuberance, re- 
spectively. The endfaces of the protuberances are formed by the surface of revolution of 
the Gaussian curve. On the whole, the surface of the microrelief in the coordinates x, y 
in the region ~l can be approximated by the expression (i.i). The modeling was carried out 
for a substrate with a relief of two forms: a "flat" relief (A = B = 0.I) and a "steep" re- 
lief (A = 0.1, B = 0.03). The contact angle was set equal to 45 ~ . 

The results of the calculations are most conveniently displayed graphically in the form 
of contour lines z = const. Figures 2 and 3 show the square cell in the coordinates x, y, 
the contour of the drop, and the isolines of the free surface. Here the following circum- 
stances should be kept in mind: the computational procedure has the peculiarity that the 
equilibrium forms of the drops were found with successively increasing volume of the drop, 
while in reality during evaporation the volume of the drops decreases. For this reason, in 
the experiment the evolution of the drops proceeds in a sequence opposite to that shown in 
Figs. 2 and 3. 

"Flat" relief, i.e., in (i.i), A = B = 0.i, corresponding to the case of microrelief 
with very flat and smooth tracings of the protuberances. The sequence of equilibrium forms 
of the liquid for this case is shown in Fig. 2. With C = 5 (Fig. 2a) the volume of the drop 
is small, and the line of three-phase contact is a circle, passing along the practically flat 
bottom of the cell without touching its protuberances. The form of the drop coincides with 
good accuracy with the exact solution for a drop on the plane. 

As the volume of the drop is increased, the line of contact approaches the protuberances, 
which distort its form. At C = 2 (Fig. 2b) it is evident that the lines z = const have the 
form of deformed squares, rotated by 45 ~ relative to the cell. We shall call this orienta- 
tion diagonal or twinned with respect to the cell. 

The twinning orientation of the surface of the drop, which remains weakly convex, per- 
sists with C = I and C = 0.6 (Fig. 2c, d). Calculations for C < 0.6 could not be performed. 
This is apparently linked to the fact that for fixed A, B, and ~ = 45 ~ configurations with 
a convex surface cannot be realized. 

"Steep" relief (A = 0.i, B = 0.03). In this case, the sequence of equilibrium shapes 
corresponding to the increase in the volume of the liquid at first repeats the sequence 
studied abow~ (Fig. 2a-d). Then, when the volume of the liquid v > 0.0415, a transition oc- 
curs in a j~nplike manner into the next equilibrium position (Fig. 3). The sign of the con- 
stant C changes (C = -0.6), the surface of the liquid becomes convex, and the line of phase 
contact becomes strongly bent at the angles of the cell. The lines z = const form at the 
center of the drop a rounded square, oriented parallel to the cell. 

Further increase in the volume at first gives rise to a more parallel orientation of 
the top of the drop (Fig. 3b), but then the surface of the drop straightens out and becomes 
almost flat (C = 0), while the lines z = const form a figure with an intermediate shape (Fig. 
3c), which then transforms into a square with the diagonal orientation (Fig. 3d). The surface 
of the liquid in this case is convex. This form of the surface of the drop remains right 
up to values C = 0.5 and volume v = 0.ii0. For v > 0.Ii0 the liquid probably completely covers 
the microrelief, forming a continuous layer. 

The results of the numerical experiment are in agreement with the direct observations 
of evaporating drops. Figures 4 and 5 show drops of the solution of aluminopotassium alums; 
the pictures were obtained using an interference light filter (% = 0.574 Dm). The diagonal 
(Fig. 4) and parallel (Fig. 5) orientation of the tops of the drops can be seen. 

The evolution of the shape of the drops enables following the change in the symmetry 
of the capillary force field, determining the orientation of the centers of crystallization. 
The origin of the twinning orientation of the KCI crystal (Fig. 6), observed in hydroepitaxy 
from solution together with the parallel orientation, can now be understood. 

The results of the calculations show that the replacement of twinning orientation of 
the tops of the drops by parallel orientation is determined by the change in the volume of 
the drop and the form of the lines on the substrate and that the parallel orientation should 
apparently not be observed on a "shallow" and "flat" microrelief. This result must be checked 
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Fig. 4 

Fig. 5 Fig. 6 

experimentally. Both parallel and twinning orientations of crystals growing from solutions 
can exist on a deep and steep relief. 

The characteristics of the evolution of symmetrical figures and surfaces of liquid drops 
described above are also characteristic of triangular and hexagonal lattices, though for the 
latter they are not very distinct. 

The authors thank T. A. Cherepanova for her constant interest in and support of this 
work, as well as for useful discussions. 
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